Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Grain boundary investigations on sulfurized Cu(In,Ga)(S,Se)2 solar cells using atom probe tomography

Identifieur interne : 000C52 ( Main/Repository ); précédent : 000C51; suivant : 000C53

Grain boundary investigations on sulfurized Cu(In,Ga)(S,Se)2 solar cells using atom probe tomography

Auteurs : RBID : Pascal:13-0303962

Descripteurs français

English descriptors

Abstract

In this study grain boundaries (GBs) and grain interiors in a sulfurized Cu(In,Ga)(S,Se)2 (CIGSSe) photovoltaic thin film have been investigated by atom probe tomography. Grain boundaries could be clearly localized by the strong agglomeration of sodium, which was additionally observed in tube-shaped clusters. These GBs were proven to contain no oxygen or alkali metals which confirms the blocking function of the used diffusion barrier sputtered on the soda lime glass substrate. Further, the concentrations of the CIGSSe matrix atoms across the GBs were studied. Here, copper deficiency and enrichment appear to be correlated with the distance from the back contact (BC). Agglomeration of sulfur in all grain boundaries near to the BC indicates interface diffusion of sulfur. Moreover, our measurements reveal the existence of a thin layer upon the back contact in which the sulfur, copper and gallium contents are significantly increased. The corresponding band-gap widening may establish the function of minority carrier repulsion from the back contact.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0303962

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Grain boundary investigations on sulfurized Cu(In,Ga)(S,Se)
<sub>2</sub>
solar cells using atom probe tomography</title>
<author>
<name sortKey="Keller, J" uniqKey="Keller J">J. Keller</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Energy and Semiconductor Research Laboratory, Department of Physics, University of Oldenburg</s1>
<s2>26111 Oldenburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>26111 Oldenburg</wicri:noRegion>
<wicri:noRegion>University of Oldenburg</wicri:noRegion>
<wicri:noRegion>26111 Oldenburg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schlesiger, R" uniqKey="Schlesiger R">R. Schlesiger</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute of Materials Physics, University of Münster, Wilhelm-Klemm-Strasse 10</s1>
<s2>48149 Münster</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>48149 Münster</wicri:noRegion>
<wicri:noRegion>Wilhelm-Klemm-Strasse 10</wicri:noRegion>
<wicri:noRegion>48149 Münster</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Riedel, I" uniqKey="Riedel I">I. Riedel</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Energy and Semiconductor Research Laboratory, Department of Physics, University of Oldenburg</s1>
<s2>26111 Oldenburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>26111 Oldenburg</wicri:noRegion>
<wicri:noRegion>University of Oldenburg</wicri:noRegion>
<wicri:noRegion>26111 Oldenburg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Parisi, J" uniqKey="Parisi J">J. Parisi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Energy and Semiconductor Research Laboratory, Department of Physics, University of Oldenburg</s1>
<s2>26111 Oldenburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>26111 Oldenburg</wicri:noRegion>
<wicri:noRegion>University of Oldenburg</wicri:noRegion>
<wicri:noRegion>26111 Oldenburg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schmitz, G" uniqKey="Schmitz G">G. Schmitz</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute of Materials Physics, University of Münster, Wilhelm-Klemm-Strasse 10</s1>
<s2>48149 Münster</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>48149 Münster</wicri:noRegion>
<wicri:noRegion>Wilhelm-Klemm-Strasse 10</wicri:noRegion>
<wicri:noRegion>48149 Münster</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Avellan, A" uniqKey="Avellan A">A. Avellan</name>
<affiliation wicri:level="3">
<inist:fA14 i1="03">
<s1>AVANCIS GmbH & Co. KG. Otto-Hahn-Ring 6</s1>
<s2>81739 Munich</s2>
<s3>DEU</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
<settlement type="city">Munich</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dalibor, T" uniqKey="Dalibor T">T. Dalibor</name>
<affiliation wicri:level="3">
<inist:fA14 i1="03">
<s1>AVANCIS GmbH & Co. KG. Otto-Hahn-Ring 6</s1>
<s2>81739 Munich</s2>
<s3>DEU</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
<settlement type="city">Munich</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0303962</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0303962 INIST</idno>
<idno type="RBID">Pascal:13-0303962</idno>
<idno type="wicri:Area/Main/Corpus">000733</idno>
<idno type="wicri:Area/Main/Repository">000C52</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0927-0248</idno>
<title level="j" type="abbreviated">Sol. energy mater. sol. cells</title>
<title level="j" type="main">Solar energy materials and solar cells</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agglomeration</term>
<term>Alkali metal</term>
<term>Atom probe</term>
<term>Copper</term>
<term>Copper selenides</term>
<term>Copper sulfide</term>
<term>Diffusion barrier</term>
<term>Gallium</term>
<term>Gallium selenides</term>
<term>Gallium sulfide</term>
<term>Grain boundary</term>
<term>Indium selenides</term>
<term>Indium sulfide</term>
<term>Minority carrier</term>
<term>Oxygen</term>
<term>Soda-lime glasses</term>
<term>Sodium</term>
<term>Solar cell</term>
<term>Sulfur</term>
<term>Thin film</term>
<term>Tomography</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Joint grain</term>
<term>Cellule solaire</term>
<term>Sonde atomique</term>
<term>Tomographie</term>
<term>Agglomération</term>
<term>Barrière diffusion</term>
<term>Verre sodocalcique</term>
<term>Porteur minoritaire</term>
<term>Sulfure de gallium</term>
<term>Sulfure d'indium</term>
<term>Sulfure de cuivre</term>
<term>Séléniure de cuivre</term>
<term>Séléniure de gallium</term>
<term>Séléniure d'indium</term>
<term>Couche mince</term>
<term>Sodium</term>
<term>Oxygène</term>
<term>Métal alcalin</term>
<term>Cuivre</term>
<term>Soufre</term>
<term>Gallium</term>
<term>Cu(In,Ga)(S,Se)2</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Agglomération</term>
<term>Sodium</term>
<term>Oxygène</term>
<term>Cuivre</term>
<term>Soufre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this study grain boundaries (GBs) and grain interiors in a sulfurized Cu(In,Ga)(S,Se)
<sub>2</sub>
(CIGSSe) photovoltaic thin film have been investigated by atom probe tomography. Grain boundaries could be clearly localized by the strong agglomeration of sodium, which was additionally observed in tube-shaped clusters. These GBs were proven to contain no oxygen or alkali metals which confirms the blocking function of the used diffusion barrier sputtered on the soda lime glass substrate. Further, the concentrations of the CIGSSe matrix atoms across the GBs were studied. Here, copper deficiency and enrichment appear to be correlated with the distance from the back contact (BC). Agglomeration of sulfur in all grain boundaries near to the BC indicates interface diffusion of sulfur. Moreover, our measurements reveal the existence of a thin layer upon the back contact in which the sulfur, copper and gallium contents are significantly increased. The corresponding band-gap widening may establish the function of minority carrier repulsion from the back contact.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0927-0248</s0>
</fA01>
<fA03 i2="1">
<s0>Sol. energy mater. sol. cells</s0>
</fA03>
<fA05>
<s2>117</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Grain boundary investigations on sulfurized Cu(In,Ga)(S,Se)
<sub>2</sub>
solar cells using atom probe tomography</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>KELLER (J.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SCHLESIGER (R.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>RIEDEL (I.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>PARISI (J.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>SCHMITZ (G.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>AVELLAN (A.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>DALIBOR (T.)</s1>
</fA11>
<fA14 i1="01">
<s1>Energy and Semiconductor Research Laboratory, Department of Physics, University of Oldenburg</s1>
<s2>26111 Oldenburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institute of Materials Physics, University of Münster, Wilhelm-Klemm-Strasse 10</s1>
<s2>48149 Münster</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>AVANCIS GmbH & Co. KG. Otto-Hahn-Ring 6</s1>
<s2>81739 Munich</s2>
<s3>DEU</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s1>592-598</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18016</s2>
<s5>354000501971110890</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>37 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0303962</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solar energy materials and solar cells</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this study grain boundaries (GBs) and grain interiors in a sulfurized Cu(In,Ga)(S,Se)
<sub>2</sub>
(CIGSSe) photovoltaic thin film have been investigated by atom probe tomography. Grain boundaries could be clearly localized by the strong agglomeration of sodium, which was additionally observed in tube-shaped clusters. These GBs were proven to contain no oxygen or alkali metals which confirms the blocking function of the used diffusion barrier sputtered on the soda lime glass substrate. Further, the concentrations of the CIGSSe matrix atoms across the GBs were studied. Here, copper deficiency and enrichment appear to be correlated with the distance from the back contact (BC). Agglomeration of sulfur in all grain boundaries near to the BC indicates interface diffusion of sulfur. Moreover, our measurements reveal the existence of a thin layer upon the back contact in which the sulfur, copper and gallium contents are significantly increased. The corresponding band-gap widening may establish the function of minority carrier repulsion from the back contact.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D05I03D</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Joint grain</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Grain boundary</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Limite grano</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Sonde atomique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Atom probe</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Sonda atómica</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Tomographie</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Tomography</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Tomografía</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Agglomération</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Agglomeration</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Aglomeración</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Barrière diffusion</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Diffusion barrier</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Barrera difusión</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Verre sodocalcique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Soda-lime glasses</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Porteur minoritaire</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Minority carrier</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Portador minoritario</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Sulfure de gallium</s0>
<s5>22</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Gallium sulfide</s0>
<s5>22</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Galio sulfuro</s0>
<s5>22</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Sulfure d'indium</s0>
<s5>23</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Indium sulfide</s0>
<s5>23</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Indio sulfuro</s0>
<s5>23</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Sulfure de cuivre</s0>
<s5>24</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Copper sulfide</s0>
<s5>24</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Cobre sulfuro</s0>
<s5>24</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Séléniure de cuivre</s0>
<s2>NK</s2>
<s5>25</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Copper selenides</s0>
<s2>NK</s2>
<s5>25</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Séléniure de gallium</s0>
<s2>NK</s2>
<s5>26</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Gallium selenides</s0>
<s2>NK</s2>
<s5>26</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Séléniure d'indium</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Indium selenides</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>28</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>28</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>28</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Sodium</s0>
<s2>NC</s2>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Sodium</s0>
<s2>NC</s2>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Sodio</s0>
<s2>NC</s2>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Oxygène</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Oxygen</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Oxígeno</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Métal alcalin</s0>
<s2>NC</s2>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Alkali metal</s0>
<s2>NC</s2>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Metal alcalino</s0>
<s2>NC</s2>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Cuivre</s0>
<s2>NC</s2>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Copper</s0>
<s2>NC</s2>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Cobre</s0>
<s2>NC</s2>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Soufre</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Sulfur</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Azufre</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>33</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Gallium</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>34</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Gallium</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>34</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Galio</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>34</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Cu(In,Ga)(S,Se)2</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fN21>
<s1>287</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C52 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000C52 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0303962
   |texte=   Grain boundary investigations on sulfurized Cu(In,Ga)(S,Se)2 solar cells using atom probe tomography
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024